Intro

Today's goal:

Teach the general idea of Rasch modeling
Outline:

- Basic principles
- Interpreting Rasch model output
- Next lecture: running a Rasch model (in R?)

Rasch modeling

Goal: making a scale

Psychometrics

Social science belief:

We can do the same thing with social and psychological concepts!"

For instance, concept: "peacefulness"
Definition: "respect for the rights and lives of all living creatures"

We can put both persons and items on a scale!
Rasch modeling: this scale will be unidimensional

Scale of persons

 trait level

The higher the person, the more peaceful they are

Scale of items

item difficulty (to comply with the concept)

"If I discover a fly in my soup, I'll
try CPR"
"War can never be justified"
The higher the item, the more peaceful someone has to be to comply with it
"I never hurt someone on purpose"
"I respect people's feelings"
"War is needed to defend your country"

Combining scales

"If I discover a fly in my soup, I'll try CPR"
"War can never be justified"
"I never hurt someone on purpose"
"I respect people's feelings"
"War is needed to defend your country"

Rule:

An item I and a person P have the same level if there's a 50% chance that someone with the same trait level as P complies with items with the same difficulty level as as I.

Why Rasch?

Use Rasch modeling if you want to know:
... difficulty of items and ability of persons. Both are unknown in advance!
... whether persons and items fit our unidimensional model ... the amount of error. Did we have enough persons and items to create an accurate measure?

Keywords

Persons (squares) and items (circles)

Person Trait level and Item Difficulty (vertical position)

Fit (horizontal position)
Error (square/circle size)

Logits

Rasch about persons:

There's a Log Odds relationship between test score and trait level

The difference between getting 40% and 50% right is a smaller trait level difference than the difference between getting 90\% and 100\% riaht

Logits

Rasch about items: There's a Log Odds relationship between correct responses and item difficulty

The difference between 40% and 50% correct responses is a smaller item difficulty difference than the difference between 90% and 100% correct responses

Logits

Item difficulty and person ability are expressed in a Log Odds Ratio (logits).

Log odds can be translated into probability scores and vice versa:

$$
\begin{gathered}
P\left(X_{i s}=1 \mid \theta_{s}, \beta_{i}\right)=\frac{e^{\theta_{s}-\beta_{i}}}{1+e^{\theta_{s}-\beta_{i}}} \\
\ln \left[P_{i s} /\left(1-P_{i s}\right)\right]=\theta_{s}-\beta_{i}
\end{gathered}
$$

Logits explained

$P_{i s}=$ chance person s answers item i correctly

$\theta_{s}=$ persona ability (trait level)
$\beta_{i}=$ item difficulty

If we know the person ability and the item difficulty, we can calculate the probability that the person will answer this item correctly

$$
\ln \left[P_{i s} /\left(1-P_{i s}\right)\right]=\theta_{s}-\beta_{i}
$$

$$
P\left(X_{i s}=1 \mid \theta_{s}, \beta_{i}\right)=\frac{e^{\theta_{s}-\beta_{i}}}{1+e^{\theta_{s}-\beta_{i}}}
$$

Example

Suppose we have 5 items, with known difficulties:

$$
\beta=[-2,-1,0,1,2]
$$

Take person s, trait level unknown, who answered all items correct except the last one:

$$
X=[1,1,1,1,0]
$$

The likelihood of having this response pattern is:

$$
L(X)=P_{1 s} P_{2 s} P_{3 s} P_{4 s}\left(1-P_{5 s}\right)
$$

Example

Since we have the difficulties β, we can calculate the $L(X)$ for different trait levels:
$\theta_{s}=-1$: 0.0112
$\theta_{s}=0:$
$\theta_{s}=1:$

Example

The trait level of person s is the trait level with the highest likelihood value

Person t with response pattern [1,1,1,0,1] has generally lower likelihood scores than person s (why?)

But person t has the same trait level as person s (why?)
Likelihood is a measure of fit! (why?)

Example

One can calculate item difficulty in a similar fashion, using known trait levels

Wait a minute...

We can determine person trait levels using item difficulties
We can determine item difficulties using person trait levels
But we start without knowing any of them!

Example

Solution:

The Rasch model runs an iterative process to determine both trait levels and difficulties

Target: optimal overall model fit

Rasch model output

how to interpret Rasch model results

TABLE 4.1
BLOT Item Difficulty Estimates With
Associated Error Estimates for Each Item

Item	Difficulty Estimate	Error Estimate	Infit Mean Square	Outfit Mean Square	$\begin{gathered} \text { Infit } \\ t \end{gathered}$	Outfit t
1	-0.77	0.26	0.98	0.69	0.0	-0.8
2	-0.70	0.26	1.01	0.75	0.1	-0.6
3	0.74	0.2	0.98	0.9	-0.2	-0.5
4	0.00	0.22	1.00	0.88	0.0	-0.4
5	-0.98	0.28	0.98	0.76	-0.1	-0.5
6	-2.42	0.47	1.06	0.83	0.3	0.1
7	-0.64	0.25	0.97	0.65	-0.1	-1.0
8	0.85	0.19	0.91	1.00	-1.1	0.1
9	0.18	0.21	1.07	0.97	0.7	0.0
10	-0.19	0.23	0.92	0.68	-0.7	-1.1
11	0.18	0.21	1.02	0.96	0.2	-0.1
12	-1.76	0.36	0.69	0.24	-1.1	-1.5
13	1.00	0.19	1.16	1.32	2.0	1.8
14	-0.70	0.26	1.15	1.32	1.0	0.9
15	1.00	0.19	0.96	0.84	-0.4	-0.9
16	-0.30	0.23	1.13	1.03	1.0	0.2
17	. 0.39	0.2	0.87	0.75	-1.4	-1.2
18	-0.05	0.22	0.9	0.74	-0.9	-1.0
19	0.47	0.2	1.01	1.05	0.1	0.3
20	-0.84	0.27	0.91	0.81	-0.5	-0.4
21	2.33	0.2	1.27	1.75	2.6	3.4
22	-1.06	0.29	0.91	1.69	-0.4	1.4
23	0.35	0.21	1.06	0.92	0.7	-0.3
24	0.22	0.21	0.89	1.03	-1.1	0.2
25	0.51	0.2	1.07	1.26	0.8	1.2
26	0.78	0.2	0.89	0.75	-1.3	-1.4
27	-0.91	0.27	0.85	0.62	-0.8	-0.9
28	- 1.63	0.19	1.12	1.23	1.4	1.4
29	-0.46	0.24	0.94	0.71	-0.4	-0.8
30	1.07	0.19	1.19	1.15	2.3	0.9
31	0.18	0.21	1.07	1.55	0.7	2.0
32	1.14	0.19	0.96	0.85	-0.5	-0.9
33	-0.52	0.25	1.1	0.93	0.7	-0.1
34	-0.41	0.24	1	0.79	0.1	-0.6
35	-0.30	0.23	0.93	0.73	-0.5	-0.9

Note. Fit statistics are shown in their natural (mean square) and standardized forms (standardized as 1).

FlG. 4.1. BLOT item pathway.

Item estimates

Fit is not the same as error!

$$
\begin{aligned}
& \text { Error is about precision (less data = more error) } \\
& \text { Fit is about expectations (unexpected behavior = lower fit) }
\end{aligned}
$$

Many items have a difficulty near 0
The logit scale is an interval scale: the difference in "difficulty" between items 15 and 4 is the same as between 4 and 22.

More on item fit

Item	Difficulty Estimate	Error Estimate	Infit Mean Square	Outfit Mean Square	Infit \boldsymbol{t}	Outfit \boldsymbol{t}
1	-0.77	0.26	0.98	0.69	0.0	-0.8
2	-0.70	0.26	1.01	0.75	0.1	-0.6
3	0.74	0.2	0.98	0.9	-0.2	-0.5
4	0.00	0.22	1.00	0.88	0.0	-0.4
5	-0.98	0.28	0.98	0.76	-0.1	-0.5
6	-2.42	0.47	1.06	0.83	0.3	0.1
7	-0.64	0.25	0.97	0.65	-0.1	-1.0
8	0.85	0.19	0.91	1.00	-1.1	0.1
9	0.18	0.21	1.07	0.97	0.7	0.0
10	-0.19	0.23	0.92	0.68	-0.7	-1.1
11	0.18	0.21	1.02	0.96	0.2	-0.1
12	-1.76	0.36	0.69	0.24	-1.1	-1.5
13	1.00	0.19	1.16	1.32	2.0	1.8
14	-0.70	0.26	1.15	1.32	1.0	0.9
15	1.00	0.19	0.96	0.84	-0.4	-0.9
16	-0.30	0.23	1.13	1.03	1.0	0.2
17	0.39	0.2	0.87	0.75	-1.4	-1.2

More on item fit

Expected fit mean square: 1.0

Fit mean square < 1.0: less variation than expected $->$ overfit Ex.: 11111111110000000000 < 0.6 is problematic

Fit mean square > 1.0: more variation than expected $->$ underfit

Ex.: 11001001010101101001

>1.2 is problematic

More on item fit

Underfit is worse than overfit
t -values show significance of misfit
Can be too sensitive, especially for item fit!
Otherwise, use $+/-1.96$ as a cutoff value

More on item fit

Outfit: all scores count equally
Infit: scores of persons with an ability near the item difficult are weighted more in determining the fit

Example:

$$
\begin{aligned}
& 11111110001110000000 \text { has a higher infit, lower outfit } \\
& 11111110100000000101 \text { has a lower infit, higher outfit }
\end{aligned}
$$

Note: all of this also holds for persons!

Item summary

Item-person map

Many persons with a high trait level
The scale is "too easy" for them
Few persons with a low trait level
Causes error in easiest items, e.g. item 6
Several perfect scores
We don't know anything about their trait level (other than that it's high)

More persons than items

Kidmap

But... we expect at least some answers in the unexpected areas (otherwise we'd have overfit!)
"It is the mark of a truly intelligent person to be moved by statistics."

George Bernard Shaw

